

Cross desktop
Application Scripting

Ideas for an implementat ion

D e s k t o p D e v e l o p e r C o n f e r e n c e 2 0 0 6 ,
O t t a w a , C a n a d a

T u e s d a y J u l y 1 8 t h 2 0 0 6
H u b e r t F i g u i è r e < h u b @ f i g u i e r e . n e t>

This presentation is released under the Creative Commons Attribution­ShareAlike Canada license.
http://creativecommons.org/licenses/by­sa/2.5/ca/

mailto:hub@figuiere.net
http://creativecommons.org/licenses/by-sa/2.5/ca/

App l i ca t ion Sc r ip t ing

● High level application control.
– It is telling an application to do some task the

application is designed for.
– Fetch data from the runing application

● It is not meant for writing complete apps
like Python or Perl are used.

● Think of a high-level IPC

Scr ip t ing Sys tem

● A language (any)
● A high-level “protocol”: Scripting Model

– Preferably with an Object Oriented paradigm
● An IPC mechanism
● Applications

Scr ip t ing Sys tem (2)

What a l ready ex i s t s?

● Kross http://kross.dipe.org/readme.html
– KOffice scripting in Python and Ruby

● Kommander
http://kommander.kdewebdev.org/
– Use UI build with QtDesigner and DCOP

● Gnome + ATK + ORBit + Python
http://www.jamesh.id.au/talks/lca2004/
– control UI through the ATK

http://kross.dipe.org/readme.html
http://kommander.kdewebdev.org/
http://www.jamesh.id.au/talks/lca2004/

What a l ready ex i s t s (2)

● Dogtail
http://people.redhat.com/zcerza/dogtail/
– UI testing tool. Use ATK and other a11y

technologies
● StepTalk

http://www.gnustep.org/experience/StepTalk.html
– Scripting for GNUStep
– Use Objective-C introspection
– Language independente

http://people.redhat.com/zcerza/dogtail/
http://www.gnustep.org/experience/StepTalk.html

What a l ready ex i s t s (3)

● All these applications with scripting
capabilities
– Gimp
– Mozilla
– etc.

What can use i t ?

● Atomato
– Automation tool for GNOME
– Typically benefiting from a universal way to

remote control applications
– Inspired from Apple Automator:

http://www.apple.com/macosx/features/automator/
● All these applications with scripting

capabilities

http://www.apple.com/macosx/features/automator/

What fo r?

● Automating tasks
● Fetching data from an application

– Current song being played in Music Player
– Exporting data

● Integrating applications together

I n sp i ra t i on

● AppleScript
– Provides all the feature wished
– But specific to MacOS X

Goa ls

● Maximum interoperability
– KDE
– Gnome
– Mozilla
– OOo

● Standardization of commands
● Language independence
● Security

Goa ls (2)

I PC

● D-Bus
– Adopted by Gnome
– Adopted by KDE for KDE4
– Structured IPC with access control

● DCOP
– In KDE3. Will be replaced by D-Bus in KDE4

● Other?

Language

● Pick the language of your choice
– Write an adapter to the Scripting Model

● Language by default (suggestion)
– JavaScript

● Because lot of end use know it (web designer, etc)
● Easy to learn
● Light implementation

– Nobody want to script in Scheme or Lisp (or
at least nobody sane)

App l i ca t ions

● Server: the application controled
– Glue to the scripting model

● Client: controling another application
– Call the scripting model APIs

Scr ip t ing Mode l

● An object oriented model
– You fetch objects

● word
● canvas
● email

– You manipulates objects
● delete word
● create email

– etc.
– More natural

Scr ip t ing Mode l (2)

● Translate the applications data model
(functionnality)
– delete word 1 of paragraph 3 of
document of front window

– draw rectangle with (5, 10, 100, 100)
in canvas of front window

● Does not translate the user interface
– at least not as a first choice

Scr ip t ing Mode l (3)

● Standardized
– Having to rewrite the script because we

changed application would suck
– Manipulating data should be done the same

way in all “similar” applications
● Word processors
● Drawing programs
● Web browsers
● e-mail programs
● etc.

Standard i za t ion

● Task done the same way whatever the
application is
– Writing a text is writing a text be it in KWord

or AbiWord
– Creating a table in a spreadsheet is the same

be it Gnumeric or KSpread
– etc.

● Described in a “registry”

“Reg i s t ry”

● Contain and complete description of the
model

● Maintained as an open specification
● Updated periodically for additions
● The goal: interoperability
● The scripting “bible”

Knowing what an app . suppor t s?

● How do we know what an application
support
– Querying its interface

● What does the application provide?
– A list of object and commands it understands

Cha l lenges

● In order to be able to have the scripting
model adopted:
– Write it without Qt (licensing incompatible

with Gnome policy)
– Provide plain C API (Gnome and its gazillion

of language bindings) and C++ (KDE)
● Make it easy to use on the server side

– providing scripting should be easy or nobody
will do it

● Secure

Secur i ty

● Very hard to achieve
– Things shouldn't happen without user

approval
● Sending mail

– The “I Love You” fiasco in 2000 and later on Windows
● Worm and virus propagation

– Why antivirus and anti-spyware editors do love Microsoft

– But things should work
● I have no answer right now

Quest ions

