
C++ and GNOME

GUADEC 2008
Istanbul, Turkey
Tuesday July 8th 2008
hfiguiere@novell.com

© Novell Inc. All rights reserved

2

Why using C++?

We don't smoke the crack
pipe...

© Novell Inc. All rights reserved

3

Why using C++

• Need of something higher level than C

• Need to use lot of C code

• Need something fast

• Need and “industry standard”

© Novell Inc. All rights reserved

4

Higher level than C

• Strong typing

• Object Oriented

• Generic programing

• Comes with standard library with containers

© Novell Inc. All rights reserved

5

Reuse C code

• C code is 99% compatible with C++
– Changes keep it compatible with plain C

• Can call C code implicitely

• Make C code more robust if compiled with C++ compiler
– Stricter typing

© Novell Inc. All rights reserved

6

C compatibility

• type casting is neccessary. Pointers, enum, etc.

• Some keywords added conflict with potential symbols:
private, public, template, etc.

• C vs C++ linkage.
– Different name mangling

– Make sure function called from C are surrounded by extern “C” { }

• ...

© Novell Inc. All rights reserved

7

Speed

• C++ is as fast as C.
– C code compiled as C++

• Template provide generic programing without speed
penalty.

– Most of the work is done at compile time

• Standard library optimised for speed.
– STL hard to beat

• Can still use very low level C.

© Novell Inc. All rights reserved

8

Libraries

• Standard Library, aka STL
– Part of the ISO standard

– Provide containers and other useful code

• Boost
– A “boost to the STL”

– Written to be compatible with STL

– Part will be integrated in the Standard Library for the C++0x ISO
stanard

• Gtkmm

© Novell Inc. All rights reserved

9

What a choice !

So many libraries!

© Novell Inc. All rights reserved

10

Which one?

• STL or Standard Libray
– Prefer it to Glib for containers

• Boost
– Smart pointers

– Utilities

• Gtkmm
– Build your UI with it.

© Novell Inc. All rights reserved

11

Because we love GNOME

© Novell Inc. All rights reserved

12

Gtk+ and C++

• You can use Gtk+ in C++ directly
– Example

> Mozilla

> OpenOffice.org

> AbiWord

– Still a pain to write new widgets: GObject

© Novell Inc. All rights reserved

13

Gtkmm

• Gtkmm are the C++ “bindings”
– Wrap GObject in a C++ friendly fashion

– Type safe signals

– Can subclass a GObject directly in C++
> easier

– Can still mix plain GObject code

– Can also use these C++ objects from C
> Although with a little cheating

• Gtkmm designated a family of API

© Novell Inc. All rights reserved

14

Example 1: unwrapping

void function()
{
Gtk::IconView *librarylistview;
Gtk::CellRendererPixbuf libcell;

 // do something
//
GtkCellLayout *cl = GTK_CELL_LAYOUT(librarylistview.gobj());

gtk_cell_layout_pack_start(cl,
GTK_CELL_RENDERER(libcell->gobj()),
FALSE);

gtk_cell_layout_add_attribute(cl,

GTK_CELL_RENDERER(libcell->gobj()),
"pixbuf",
m_model->columns().m_pix.index());

gtk_cell_layout_add_attribute(cl,

GTK_CELL_RENDERER(libcell->gobj()),
"libfile",
m_model->columns().m_libfile.index());

}

© Novell Inc. All rights reserved

15

Example 2: subclassing

class LibraryCellRenderer
: public Gtk::CellRendererPixbuf

{
public:

LibraryCellRenderer();

virtual void get_size_vfunc (Gtk::Widget& widget,
const Gdk::Rectangle* cell_area,
int* x_offset, int* y_offset,
int* width, int* height) const;

virtual void render_vfunc (const Glib::RefPtr<Gdk::Drawable>& window,
 Gtk::Widget& widget,
 const Gdk::Rectangle& background_area,
 const Gdk::Rectangle& cell_area,
 const Gdk::Rectangle& expose_area,

Gtk::CellRendererState flags);

Glib::PropertyProxy_ReadOnly<db::LibFile::Ptr> property_libfile() const;
Glib::PropertyProxy<db::LibFile::Ptr> property_libfile();

private:
Glib::Property<db::LibFile::Ptr> m_libfileproperty;

};

Properties

© Novell Inc. All rights reserved

16

Resource management

• C++ has advantage over C for resource management

• Resource acquisition is initialisation (RAII)
– Constructed entering the scope

– Destructed exiting the scope

© Novell Inc. All rights reserved

17

Smart pointer

• Using RIIA we can write “smart pointer
– A pointer that will free itself when no longer needed

– Predictible garbage collection

• Standard library

• Boost

• Glibmm

© Novell Inc. All rights reserved

18

Standard library: std::auto_ptr<>

• Very primitive:
– Transfer pointer ownership on copy

– Release memory on destruction.

• Avoid using. Prefer boost.

© Novell Inc. All rights reserved

19

Boost.SmartPtr

• Boost provide a set of Smart pointer classes
– shared_ptr: shared pointer

– scoped_ptr: a non copyable pointer to free on exit

– weak_ptr: a pointer that can be freed anytime
> A precondtion check make it safe.

– intrusive_ptr: for when the “resource” have it own management and
ref counting.

• Is in TR1 for inclusion in the standard library

© Novell Inc. All rights reserved

20

Glibmm

• Glibmm has Glib::RefPtr<>
– A kind of intrusive pointer

– Perform g_object_ref() and g_object_unref()

– Used exclusively within Glibmm and Gtkmm.

© Novell Inc. All rights reserved

21

Pointer: Example in C

void function()
{

MyStruct * s = (MyStruct*)malloc(sizeof(MyStruct));
if(condition) {

/* do something */
free(s);
return;

}
/* do something else */
free(s);

}

© Novell Inc. All rights reserved

22

Smart pointer: Example in C++

void function()
{

boost::scoped_ptr<MyStruct> s(new MyStruct));
if(condition) {

/* do something */
return;

}
/* do something else */

}

© Novell Inc. All rights reserved

23

Glib::RefPtr: Example

void function()
{

Glib::RefPtr<Gdk::Pixbuf> pixbuf =
Gdk::pixbuf::create(Gdk::COLORSPACE_RGB,

 false, 8, 100, 100);
if(condition) {

/* do something */
return;

}
/* do something else */

}

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

